


- OPTIMAL POSITION of the axis of the chamber which guarantees a minimum loss of load and reducing the effect of cavitation.
- Rigid closing of the piston which provides GREAT ACCURACY in the control regulation.
- Spring cylindrical base to achieve a HIGH LEVEL OF PRECISION in the operation.
- The valve can work as SIMPLE OR DOUBLE CHAMBER.
- ONLY SUITABLE FOR AGRICULTURAL USE







# SPECIFICATIONS

- CONNECTIONS : 2"\_DN50: Threaded BSP, NPT; 3"\_DN80: Flanged ISO, ANSI, BS.
- DESIGN: Single or double chamber line design.
- SIZES RANGE : Thread: 2"-DN50 Flange: 3" – DN80.
- NOMINAL PRESSURE (bar): PN16. (psi): PN232.

### MATERIALS

- BODY AND COVER: GGG-40 Ductile Iron.
- DIAPHRAGM: Natural rubber reinforced with nylon.
- SPRING: Stainless steel.
- COVERING: Epoxy-polyester double covering.

www.cometal.es



### WORKING SCHEME

## SIMPLE CHAMBER

- P1 = Upstream pressure
  P2 = Downstream pressure
  P3 = Control chamber pressure
  P4 = Double chamber pressure
  A = Double chamber access
  B = Double chamber plug
  SD = Closing disc surface
  SM = Diaprhagm surface (SM=3SD)
  FM= Spring force
- **FR**= Axis friction force

#### **OPENING FORCE (FA)**

FA = P1  $\cdot$  SD + P4  $\cdot$  SM OPENING FA > FC + FM P3 = 0, P4 = P2 P1 $\cdot$ SD + P4 $\cdot$ SM > P2 $\cdot$ SD + FM

### DOUBLE CHAMBER

- P1 = Upstream pressure
- **P2** = Downstream pressure
- P3 = Control chamber pressure
- P4 = Double chamber pressure
- A = Double chamber access
- B = Double chamber cup
- **SD** = Closing disc surface
- **SM** = Diaprhagm surface (SM=3SD)
- **FR**= Axis friction force

#### **OPENING FORCE (FA)**

 $FA = P1 \cdot SD$ 

FUERZA CIERRE (FC)

 $FC = P2 \cdot SD + P3 \cdot SM$ 

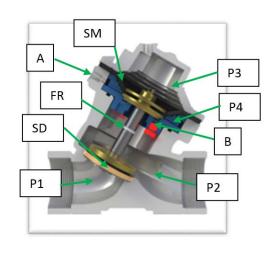
It is necessary to activate the double chamber for a full opening and deactivate it for closing.

#### OPENING FA > FC

 $FA = P1 \cdot SD + P4 \cdot SM \implies P1=P4$ 

P3 = 0, P1=P4 P1·SD > P2·SD P1·SD + P4·SM > P2·SD CLOSING FA < FC P3 = P1, P4 = P2 = 0 P1·SD < P2·SD + P3·SM

 SM
 FM

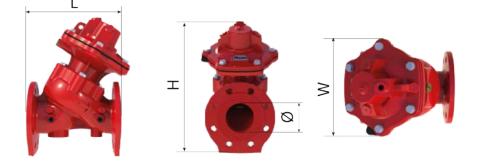

 P3
 P3

 FR
 P4

 SD
 B

 P1
 P2

CLOSING FORCE (FC)  $FC = P2 \cdot SD + P3 \cdot SM + FM$ CLOSING FA < FC P3 = P1, P4 = P2 = 0  $P1 \cdot SD + P4 \cdot SM < P2 \cdot SD + P3 \cdot SM + FM$  $P1 \cdot SD < P3 \cdot SM + FM$ 



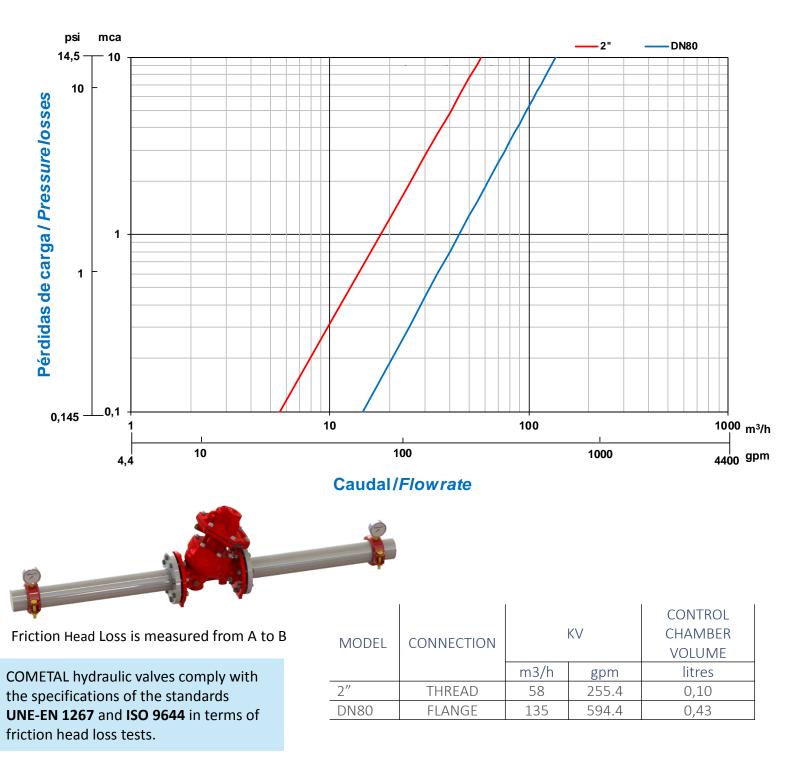



COMETAL hydraulic valves comply with the specifications of the standards **UNE - EN 1074** about valves for the supply of water and **ISO 9635** about irrigation valves with reference to **general requirements**, mechanical resistance and watertightness.



## DIMENSIONS AND WEIGHTS




| MODEL | CONNECTION | LENGTH (L) |      | HEIGHT (H) |       | INSIDE DIAM (Ø) | WIDTH (W) |      | WEIGHT |
|-------|------------|------------|------|------------|-------|-----------------|-----------|------|--------|
|       |            | mm         | inch | mm         | inch  | inch            | mm        | inch | Kg     |
| 2″    | THREAD     | 186        | 7.32 | 198        | 7.79  | 2″              | 147,3     | 5.79 | 7.4    |
| DN80  | FLENAGE    | 252        | 9.92 | 377,6      | 14.86 | 3″              | 229,1     | 9.01 | 25.9   |



# DCP VALVES



COMETAL valves comply with the following standards for threaded connections: BSP. 7.1 ISO - 228.1 ISO - UNE - EN 10226 - BS-EN 10226. ISO standard and European standards. NPT. ASME-ANSI B 1.20. American standard.

