
# VÁLVULAS DCP

- ✓ OPTIMAL POSITION of the axis of the chamber which guarantees a minimum loss of load and reducing the effect of cavitation.
- Rigid closing of the piston which provides GREAT ACCURACY in the control regulation.
- Spring cylindrical base to achieve a HIGH LEVEL OF PRECISION in the operation.
- ✓ The valve can work as SIMPLE OR DOUBLE CHAMBER.







### **SPECIFICATIONS**

CONNECTIONS: 2"\_DN50: Threaded BSP, NPT;
3"\_DN80: Flanged ISO, ANSI, BS.

• DESIGN: Single or double chamber line design.

 SIZES RANGE: Thread: 2"-DN50 Flange: 3" – DN80.

• NOMINAL PRESSURE (bar): PN16.

(psi): PN232.

### MATERIALS

- BODY AND COVER: GGG-40 Ductile Iron.
- DIAPHRAGM: Natural rubber reinforced with nylon.
- SPRING: Stainless steel.
- COVERING: Epoxy-polyester double covering.

Α

SD

P1

FΜ

Р3

P4

В

P2



#### SIMPLE CHAMBER

P1 = Upstream pressure

P2 = Downstream pressure

P3 = Control chamber pressure

P4 = Double chamber pressure

A = Double chamber access

B = Double chamber plug

**SD** = Closing disc surface

**SM** = Diaprhagm surface (SM=3SD)

**FM**= Spring force

FR= Axis friction force



 $FA = P1 \cdot SD + P4 \cdot SM$ 

**OPENING** FA > FC + FM

P3 = 0, P4 = P2

 $P1\cdot SD + P4\cdot SM > P2\cdot SD + FM$ 



 $FC = P2 \cdot SD + P3 \cdot SM + FM$ 

CLOSING FA < FC

P3 = P1, P4 = P2 = 0

 $P1 \cdot SD + P4 \cdot SM \leq P2 \cdot SD + P3 \cdot SM + FM$ 

 $P1 \cdot SD \leq P3 \cdot SM + FM$ 

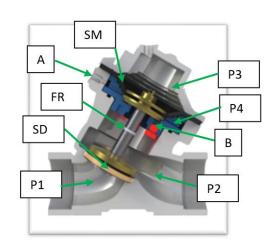
#### **DOUBLE CHAMBER**

P1 = Upstream pressure

**P2** = Downstream pressure

P3 = Control chamber pressure

P4 = Double chamber pressure


A = Double chamber access

B = Double chamber cup

**SD** = Closing disc surface

**SM** = Diaprhagm surface (SM=3SD)

FR= Axis friction force



#### **OPENING FORCE (FA)**

 $FA = P1 \cdot SD$ 

 $FA = P1 \cdot SD + P4 \cdot SM \Rightarrow P1 = P4$ 

FUERZA CIERRE (FC)

 $FC = P2 \cdot SD + P3 \cdot SM$ 

It is necessary to activate the double chamber for a full opening and deactivate it for closing.

**OPENING** 

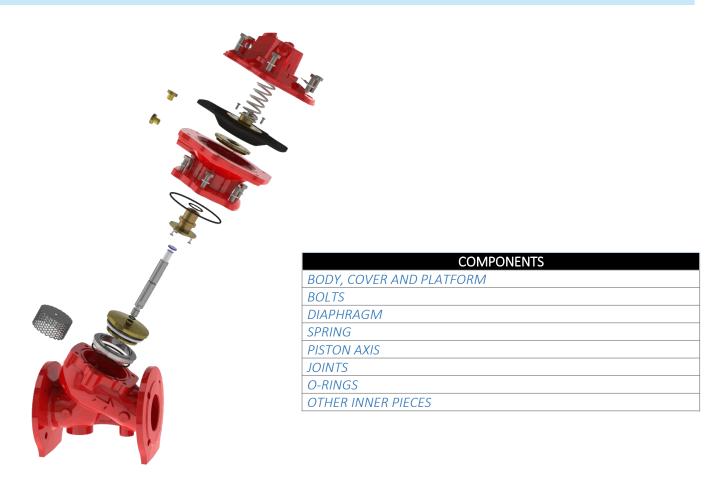
FA > FC

CLOSING



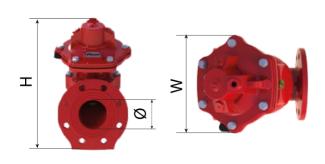
FA < FC

P3 = 0, P1 = P4


P1·SD > P2·SD P1·SD + P4·SM > P2·SD

P3 = P1, P4 = P2 = 0

P1·SD < P2·SD + P3·SM


## COMPONENTS

COMETAL hydraulic valves comply with the specifications of the standards **UNE - EN 1074** about valves for the supply of water and **ISO 9635** about irrigation valves with reference to **general requirements**, **mechanical resistance and watertightness**.



## DIMENSIONS AND WEIGHTS

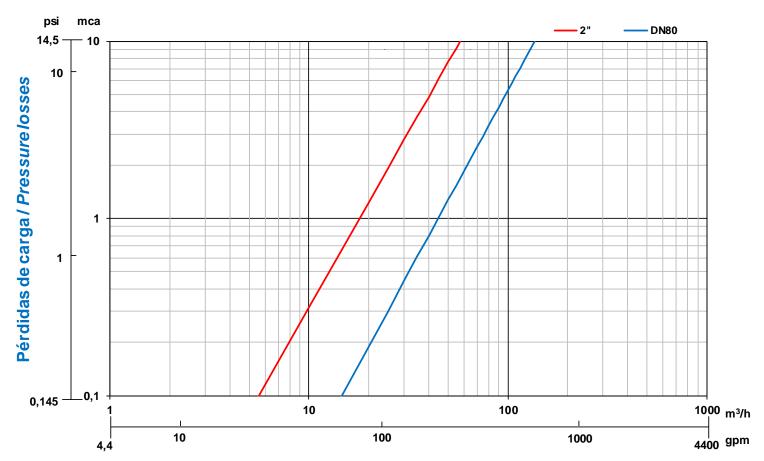




| MODEL | CONNECTION | LENGTH (L) |      | HEIGHT (H) |       | INSIDE DIAM (ø) | WIDTH (W) |      | WEIGHT |
|-------|------------|------------|------|------------|-------|-----------------|-----------|------|--------|
|       |            | mm         | inch | mm         | inch  | inch            | mm        | inch | Kg     |
| 2"    | THREAD     | 186        | 7.32 | 198        | 7.79  | 2"              | 147,3     | 5.79 | 7.4    |
| DN80  | FLENAGE    | 252        | 9.92 | 377,6      | 14.86 | 3"              | 229,1     | 9.01 | 25.9   |










COMETAL valves comply with the following standards for threaded connections:

**BSP. 7.1 ISO - 228.1 ISO - UNE - EN 10226 - BS-EN 10226**. ISO standard and European standards.

NPT. ASME-ANSI B 1.20. American standard.



Caudal/Flowrate



Friction Head Loss is measured from A to B

COMETAL hydraulic valves comply with the specifications of the standards **UNE-EN 1267** and **ISO 9644** in terms of friction head loss tests.

|       |            |      | KV    | CONTROL<br>CHAMBER |  |  |
|-------|------------|------|-------|--------------------|--|--|
| MODEL | CONNECTION |      | ΝV    | VOLUME             |  |  |
|       |            | m3/h | gpm   | litres             |  |  |
| 2"    | THREAD     | 58   | 255.4 | 0,10               |  |  |
| DN80  | FLANGE     | 135  | 594.4 | 0,43               |  |  |